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1. Abstract ‘ i

- An important issue in the control of practical systems is the effect of
/  model uncertainty on closed loop performance. This is of particular concern
when flexible structures are to be controlled, due to the fact that states
associated with higher frequency vibration modes are truncated fn order to

make the control problem tractahle. [n—this-—paper—wom—empley _digital / 6@/
simulations of a single-1ink manifpulator system  to demonstrate that “passive (e q"/w/ 4’}‘ !
damping added to the flexible member reduces advm 7

model uncertainty. A controller was designed based on a model including only
one flexible mode. This controller was applied to larger order systems to
evaluate the effects of modal truncation., Simulatfons using an LQR design
assuming full state feedback {1llustrate the effect of control spillover.
Simulations of a system using output feedback {llustrate the destabilizing
effect of observation spillover. The simulations reveal that the system with
passive damping 1s less susceptible to these effects than the untreated case.

2. Introduction

Many in-space robotic operations will require arms capable of very long reach, while like other space
structures, they must be lightweight. Because such arms are l1ikely to be highly complfant (as is the space
shuttle RMS arm), control strategies designed to accommodate structural flexibility must be considered.
Controlling flexible structures through purely active measures can be cumbersome in terms of hardware and
computation time requirements. Moreover, active controllers for flexible structures are subject to
instability and other problems assocfated with mode! uncertainty. The burden of active control can be
reduced by augmenting active control with passive damping. This enhances system stability and reduces the
adverse affects of model uncertainty, thereby providing justification for the use of low order dynamic
models and controllers,

In this paper we consider & single-link, single-axis arm which rotates in the horizontal plane about a
pinned hub in response to a control torque t{t) . The system, illustrated in Figure 1, and the models
employed 1in this investigation are based upon a laboratory version of the arm that has been used in
experimenta)l fnvestigations [1-4] at Georgia Tech. The flexible member is a long slender beam that is
assumed infinitely stiff in vertical tending but flexible in horizontal bending.
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Figure 1. System Configuration
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The pfnned hub has rotary fnertia J. A point payload mass ® 13 fizxed to the beam's tip. Although,
manipulators sometimes carry payloads that have significant rotary inertia, the effect of this fnertia {1
qualitatively simflar to that of a point mass for the configuration considered, and hence pasyload tnertis i1
not f(ncluded here. Friction in the pinned Jjoint is represented by a rotary viscous dashpot. Thiy
configuration s viewed as being representative of lightweight, large payload capacity manipulators,
Parame =3 and dimensions for the arm that the system considered in this paper are tabulated in Appendix A,

Damping augmentation fs provided by a constrained viscoelastic layer damping treatment (2,5]. Tm
spproach involves bonding a thin f1lm of viscoelastic material to the flexible member's surface. TN
viscoelastic layer in turn has a stiff elastic constraining layer bonded to 1ts surface. The combine(
system forms a sandwich-like structure fllustrated fn Figure 2. When elastic deflectfon of the structur(
occurs, shear induced plastic deformation 1s imposed in the viscoelastic layer. The energy dissipatios
associated with the plastic deformation provides the desired mechanical damping., The damping ratio for th
untreated beam was approximately constant for all modes at .007, The treatment increased the damping ratio
associated with the modes of interest (say the first six modes) by about an order of magnitude. The treats:
beam had a damping ratfo of .03 for the first mode and the values for the 2nd through 6th modes ranged froi
052 to .06. Addittional damping 1s introduced by joint friction,

Qlastie Constraining Layor

Figure 2. Treated Beam Element Under Flexure

The first step of controller design is usually the development of a “"design model" that is a simplifie
representation of the actual plant dynamics. The design model serves as the basis for controller design
In the case of flexible mechanical systems, the design model 1s often a truncated representation of th
actual plant, retaining only a few critical modes. This implies the assumption that a model based upon
small number of vibration modes provides adequate representation of the much larger order actual plant, fo
controller design purposes. The modeling error associated with the neglected modes, adversely affect
closed loop system performance. In this paper, simulation results are presented to illustrate that the i1
effects associated with modeling error are reduced somewhat through the addition of passive damping to th
system,

We consider a multivarfable control system, designed according to the steady state linear quadrati
regulator (LQR) approach, A four state model 1including only one flexible mode and the rigid body mod
represents the design model, We consider the consequences of controlling larger order plants
representative of the actual system, with a controller derived for the design model.

The regulator is formulated to penalize tip position and control effort. Two cases are considered
The first assumes that full state feedback is available, The second case uses output feedback of ti
position (v ), tip velocity, hub angle (6) and hub angular velocity. The controller designs are kept simpl

to facilitate comparisons between the damped and undamped systems.1

3. Dynamic Model

. Linear transfer function models for the system of interest were developed based on the assumption ¢
small bending deflections and small hub angles. Transfer function modeling for similar systems has be¢
discussed by several authors [2,4,6-8] and we will not repeat the procedure here. Details on development ¢
the model employed here may be found 1in [2]. The transfer function poles and zeros used in th
investigation are tabulated in Appendix B.

1/ Although it possesses some light structural damping and is affected by joint friction, we shall
desfgnate the untreated arm as "undamped”,
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In the interest of obtaining a state space realization from the transfer functions it {s convenfent to
work with the partial fractifon expansion form given by Equation 1, The «'s are the modal frequencies,

the x‘s are the damped modal frequencies w 7 1 - C , the {'s are modal damping ratios and n is the number
of flexible modes represented. Damping due to joint friction has not been accounted for in these transfer

functions but will introduced Tater as a form of feedback.Z The restidues xo and Ky Sorrespond to the rigid
body mode.

A M A.s + As *yp
6(3)-—20-;0-7——1-—.—1—200000-!—-”—-—_"-—7 {1
X s 38 S ey s 2wty

The subscript x on G_ (s) represents the output varfable of interest. For the present study four transfer
functions were required. Equation 2 summerizes these and defines the notation used here.

hub angular position ofs) Gols)
hud angular rate so(s) Gg(s)
. . T(s) (2)
beam tip position Y (s) le(s)
beam tip rate SVL(S) G;L(s)

Here s {is the Laplace operator and T{s), o(s) and VL(’) denote the Laplace transforms of the input torque,
hudb angle and tip position varfables, respectively.

Figure 3 1s a block diagram representation of the transfer function,

Figure 3. Block Dfagram Equivalent of Equation 1
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The systes matrices corresponding to Figure J are as follows:
0o 1
0 O 0 1
As - '12 -Zle ]

0 1
R

8010101 3
QD Rgmp 2y eo g )

The leading principle 2x2 sudmatrix of A represents the rigia body mode in the tip and hud position transfer
functions.

For each of the output variables x there fs a unique output matrix C_ . Me wil) denote these as
Co. C;. ch and C;L with the notation carrying the obvious meantng. These are assembled to form a
measurement matrix representing four outputs as indicated in the measuresent equation (4) given by:

r - ~ -
[} CO
4 ¢
y= VL ] CVL 4 . cl {4)
v Ce
Sl I R

In order to account for viscous joint damping we consider the feedback system fllustrated in Figure 4,

Gy(s) }———-— a(s)

Gy(s) +——-s— 6(s)

T(s) o T(8)
T W)
Gy(s) | — (s
a
b

Figure 4, Block Dfagram Illustrating Feedback of Joint Damping

When the effect of joint damping fs introduced through boundary condition ‘eedback, a new A matrix fs
formed:

A=A-BCp (s)

Where b 1s the joint damping coefficient. The analysis that follows is based upon a system model of the
form (A, B, ¢) .

4, Systea Representation

We wish to design a controller for a plant with 2(n+l) states, using a design model inciuding only one
vidbration mode. Here n represents the number of flexible vibration modes required to provide accurate
representation of the actual plant, and the additional two states represent rigid body motion. Controllers
developed for the single mode system are applied to a model including three vibration modes (8 states), and
one including six vibration modes (14 states), These are referred to as the plant models in the text that
follows because they are intended to represent actual plants in the simulations presented here.
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The system equations for the plant models are given by:

K (1) o Ax (t) +Bu(t) O]

y(t) = Q' u.(t)
Nere 5. is the A matrin defined in fquatfon 5, in this case for an n mede appronimation of the plant.
Staflarly the ;n matrin is the ¢ matrix of Equation 4 for an » mode approximstion,
The system equations for the design models are given by:

R (t) = 4 x(t) + 8,2 n
yit) = ¢ x(¢)

The system output vector (y) considered is of the form
yelody v (8
LLe

S. Regulater Design

The standard form of )inear quadratic cost function {3

J -f (ITQI + uTRn) (13 (9)
€ Jo

where Q 1s a sysmetric, positive semf-definite state weighting matrix and R s a syssetric, positive
definite control effort weighting matrix., Because we seck to regulate tip position, a performance {ndex
that penalizes the tip position output varfable and control effort was chosen. A cnst function for tip
position output weighting {s expressed as follows:

2 2
Jc -J: ("L * re°) ot (10)

The output weighted performance index (10) 1s equivalent to the standard state weighted version (9) with
weighting matrices given by:

Q-c, . o » R=Lr] (1)

The system (5". B". Q") represents an actual plant with dynamics that are either incompletely known or too
cumbersome to permit the use of the full mode! In controller design, The four state design
model (51. Bl' ;l) will serve as an approximation to the actual plant for controiler design purposes. In
this case ¢, replaces (  in the state weighting matrix Q (11)

Two attractive features of the tip posftion weighted cost function (10) are that 1t has only one
parameter (r) to vary, and that a given value of r can be expected to impose similar performance demands on
both systems {damped and undamped). Reducing the value of r decreases the pemalty on control effort and is
therefore equivalent to demandin§ higher performance at the expense of increased control energy,

6. State Feedback

In a system with decoupled modes, such as the Jordan canonical realization of Equatfon 3, a state
feedback law

us -lel (12)

designed to stabflize the reduced order system (7) wil) stabilize the actual system (6), provided that the
truncated modes are asymptotically stable. The neglected modes can, however, be excited at their natural
frequencies in response to the applied control input. This effect is called control spillover [9,10] in the
}iterature related to controlling flexible spacecraft. The system we are considering has a small amount of
modal coupling, due to the introduction of viscous joint damping using Equation 5. Since we normally do not
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expect viscous damping to destabilize a system, it is reasonable to expect that the state feedback law (12)
will stabilfze the plant models of interest.

In this section we design a controller based on the output weighted performance index (10). We assume
thet the first four elemsnts of the state vector are somehow available for feedback. Control fs applied to
these four state elements according to Equation 12. The time varying gain Kj(t) thet minimizes the cost
function (9) ts given by

AU w AT (13)

where S(t) i3 the solution of the assoctated matrix Riccat! equatifon. An often used substitution for the
optimal gafn Ki(t) 13 fts constant steady state value Ky e ‘l") . The steady state walue ~f S(t) i35 the
solution of the algedraic Riccatt! equation:

-$(=) = S(=)a, + A,Ts(=) - =) 8870, Ts () 4 0 = 0 (14)
The steady state gatn solution 1s used ° 'he simulations presented here.

7. Simulations With State Feedback

Figure § fllustrates the simulated response of the design mode! (7) to a 4.8 inch step command, for
varfous values of r. The simulations indicate that both the damped and undamped systems are capable of
almost arbitrarily good performance as r s decreased. [n practice, the limit on the response time {s
dictated by the strength of the beam and the torque 1imit of the actuator. A theoretical (assumf imnite
beam strength and motor torque capacity) limit on the speed of response s discussed by Schmitz (6]. Tnis
limit 1s related to the non-minimum phase character of the tip position transfer function. Notice .nat the
wrong way start phenomenon typical to systems with non-minimum zeros 1s indicated in the plots. Scmitz
interprets the theoretical response limit as being roughly egquivalent to a pure delay associated with the
fnftia) period durtn, which the tip moves in the direction opoosite to the control command.

When the state feedback law (12) s applied to the larger order systems (Figures 6 and 7), the

excitation of the second mode of vibration {s readily apparent when r = 1075, In the undamped system
(Figures 6a and 7a) the oscillation takes more than two seconds to dic out. Thus, in the case of the
undamped system, we find that designing for higher performance (by reducing r) actually results in slower
response. The excitation of the second mode also occurs in the damped system (Figure 6b and 7b), however,
1t dies out in about 0.8 seconds. Although the performance of the actual plant fs not as good as tmt of
the design model (Figure Sb), the simulation indicates that the response time for r= 107° {3 g1ightly better
than the lower levels of demanded performnce (larger values of r) considered. This fs in sharp contrast
with the results of Figures G6a and 7a for the undamped system. This example clearly indicates that the
damped system fs less susceptible to control spillover than the undamped case.

[t should be noted that the peak control torque command, when r = 10'6. is about 4800 fnch pounds.
This value 1s well above the beam’'s maximum bendfng moment capacity (~ 175 in. 1bf. based on yfeld) and is
about 60 times greater than the rated torque capacity (85 in.1bf.) of the experimental system's motor. In
l1ight of these figures, one might arque that contro! spfllover {s not a realistic concern for the system of
interest. The author concedes to the sosewhat articicfal nature of this example, however, further
consideration of the results adds to their significance. Suppose the initial step command 1s scaled down by
a factor of 50 to about 0.1 inches. Because the system model is linear, we know that the corresponding peak
torque 1s about 100 fnch.1bf, This fs a realistic figure for the system of interest., In Figures 6a and 7a,
peak tip position oscillation amplftude s about 1.5 inches, Scaling this figure dowm by a factor of 50
gives 30 thousandths of an inch - a significant value in the context of robot accuracy. ,

8. Output Feedback

The simulations presented in the previous section were based on the assumed availability of states.
Practical control systems must depend upon measured outputs for feedback. Frequently the outputs are
different entities than the states. [n contrast to systems using state feedback, output feedback systems
are subject to fnstability as a consequence of mocel reduction [9-11] even when the neglected modes are
asymptotically stable. This effect ts sometimes called observation spillover,

In this section we follow the steady state LOR controller design approach employed in the previous
section, however, we implement the controller using output feedback. The design model (A, Bj, Cy) has four
states and four outputs and the measurement matrix gl ts invertible. This allows us to calculate the state

X of the desing model! from the output vector y according to:

x, =c by (15)
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In this case the output feedback control 1l fs given by:

. -Kl ;l-l’ (16)

The output feedback law (16), when applied to the design mode! 13 equivalent to state feedback (12). When
spplied to controlling the actual model, the output feeddback control laew (16), expressed tn the form of o
state feedback law {s given by:

ek 67 g an

Notfce that when applfed to the plant mode), the output feedback law recefves information from the states
that were neglected fn design. This 1s unwanted input (spillover}, and can be viewed as a forms of
measurement corruption. -

9. Simulations With Output Feedback

Simulation results obtained using output feedback are presented in Figures 8 through 10. Figures 8a
and 8b are simulations of the design model using the output feedback law (16). When applied to the design
mode) the output feedback law considered 1s equivalent to state feedback (Figure 5). This case 1s preseated
here as a basis for comparison. NWhen the low order output feedback law (16) s applfed to the actual system
models (Figure 9 and 10) we observe that the performance is limited by the onset of instabtliity. In the
undamped system, the first vibration mode is unstable for r = 0.0l and r = 0.005. The damped system remains
stable under the same conditions, however, some first mode oscillatory behavior becomes evident as we
attempt to design for higher performance. The damped system is not immune to tne instabflity experienced by
the undamped case, however, due to 1ts more favorable open loop pole placement it {is more robust.

Upon comparison of the six mode and three mode systems, we find that the stable responses of the six
mode plants do not differ noticeably from those of the three mode plants. On the other hand, the divergeace
rate of the unstable oscillations is greater in the six mode plant (Figure 10a) than in the three mode plant
(Figure 9a). This indicates that the presence of the higher, neglected modes (4th, Sth and 6th) do affect
system stability slightly.

This exampie {llustrates that the passfve damping treatment considered reduces the flextble systes's
susceptibility to observation spillover {induced {instability. The peak torque commanded at the highest
performance (when the system {s stable) was about 80 in.lbs., indicating that the performance demanded was
reasonable for the system under consideration. The example employs perhaps the most simplistic of all
possible output feedback schemes, Systems employing state estimators also rely on measured data for
feedback, and they too are subject to instability due to modeling error.

10. Conclusion

One form of modeling error that is relevant for control of flexible structures results from {ignoring
high order vibration modes in the process of deriving a design model. The effects of this type of modeling
error are manifested as control and observation spillover. We have presented simulations of multivariwle
control a particular flexible arm to {llustrate that the addition of passive damping yfelds a system that {s
less susceptible to these undesirable effects.

To some degree these results follow intuition, 1n that one naturally expects that increasing the
damping terms of a system's efgenvalues will provide a more stable system with improved performance, The
results presented are intended to demonstrate the concept of passive damping on an example that f{s
representative of practical Tightweight manipulators.
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APPENDIX A - System Parameters and Dimensions
Joint Inertia : J = 30.2 n2.10m.
Payload Mass m= 0,09 Tbm.
Joint Damping Coefficient b = 0.10 in.1bf, s?
Beam Oimensions 48" x 3/4" x 3/16"
Ma ter{al 6065-T6 Aluminum
APPENDIX 8 - Transfer Function Poles and Zeros
Table B-1 Undamped System
Mode System Poles Hub Angle T.F. Zeros Tip Position T.F. Zeros
1 -0.0541 37,726 -0.0149 32,1129 +8.3410
2 -0.1284 +J18,3456 -0.0985 +§14,0768 $45.0741°
3 ~0.2957 +342,2446 -0,.2853 +J40.,7557 +111,.3047
4 -0.5769 +j82.4188 -0.5719 +J81.6939 $206,9715
5 ~0.9633 +j137.6207 -0.9603 4$j137.1836 $332,0743
6 ~1.4532 +j§207.5965 -1,4511 +3207.2946 4486.6130
Table B-2 Damped System
Mode System Poles Hub Angle T.F, Poles Tip Position T.F., Poles
1 -.22197 +j7.1601 A -.0176 $j1.9443 1 -7.2785, + 7.8830
2 -.9124 +j17.4515 -.6202 +§13.2581 2 -45,9556, +44.7292
3 ~2.3169 +3§41.6716 -2,2342 $340.1610 3 -97,7161, +113.9306
4 ~4.8477 +j83.2589 -4,7987 +j82.5101 4 -263.5548, +216.0952
5 -8.5293 +3142.4761 -8,5042 +§142,0184 5 -389.2245, +351,1999
6 -11.7674 +§219.5992 -11,7581 +j219.2929 6 ~554,2140, +519,0317
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